3.6.61 \(\int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [561]

3.6.61.1 Optimal result
3.6.61.2 Mathematica [A] (verified)
3.6.61.3 Rubi [A] (verified)
3.6.61.4 Maple [A] (verified)
3.6.61.5 Fricas [A] (verification not implemented)
3.6.61.6 Sympy [F(-1)]
3.6.61.7 Maxima [A] (verification not implemented)
3.6.61.8 Giac [A] (verification not implemented)
3.6.61.9 Mupad [B] (verification not implemented)

3.6.61.1 Optimal result

Integrand size = 21, antiderivative size = 96 \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {4 \csc (c+d x)}{a^3 d}-\frac {2 \csc ^2(c+d x)}{a^3 d}+\frac {\csc ^3(c+d x)}{a^3 d}-\frac {\csc ^4(c+d x)}{4 a^3 d}+\frac {4 \log (\sin (c+d x))}{a^3 d}-\frac {4 \log (1+\sin (c+d x))}{a^3 d} \]

output
4*csc(d*x+c)/a^3/d-2*csc(d*x+c)^2/a^3/d+csc(d*x+c)^3/a^3/d-1/4*csc(d*x+c)^ 
4/a^3/d+4*ln(sin(d*x+c))/a^3/d-4*ln(1+sin(d*x+c))/a^3/d
 
3.6.61.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.72 \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {16 \csc (c+d x)-8 \csc ^2(c+d x)+4 \csc ^3(c+d x)-\csc ^4(c+d x)+16 \log (\sin (c+d x))-16 \log (1+\sin (c+d x))}{4 a^3 d} \]

input
Integrate[Cot[c + d*x]^5/(a + a*Sin[c + d*x])^3,x]
 
output
(16*Csc[c + d*x] - 8*Csc[c + d*x]^2 + 4*Csc[c + d*x]^3 - Csc[c + d*x]^4 + 
16*Log[Sin[c + d*x]] - 16*Log[1 + Sin[c + d*x]])/(4*a^3*d)
 
3.6.61.3 Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.90, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3042, 3186, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^5(c+d x)}{(a \sin (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^5 (a \sin (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3186

\(\displaystyle \frac {\int \frac {\csc ^5(c+d x) (a-a \sin (c+d x))^2}{a^5 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {\int \left (\frac {\csc ^5(c+d x)}{a^4}-\frac {3 \csc ^4(c+d x)}{a^4}+\frac {4 \csc ^3(c+d x)}{a^4}-\frac {4 \csc ^2(c+d x)}{a^4}+\frac {4 \csc (c+d x)}{a^4}-\frac {4}{a^3 (\sin (c+d x) a+a)}\right )d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {\csc ^4(c+d x)}{4 a^3}+\frac {\csc ^3(c+d x)}{a^3}-\frac {2 \csc ^2(c+d x)}{a^3}+\frac {4 \csc (c+d x)}{a^3}+\frac {4 \log (a \sin (c+d x))}{a^3}-\frac {4 \log (a \sin (c+d x)+a)}{a^3}}{d}\)

input
Int[Cot[c + d*x]^5/(a + a*Sin[c + d*x])^3,x]
 
output
((4*Csc[c + d*x])/a^3 - (2*Csc[c + d*x]^2)/a^3 + Csc[c + d*x]^3/a^3 - Csc[ 
c + d*x]^4/(4*a^3) + (4*Log[a*Sin[c + d*x]])/a^3 - (4*Log[a + a*Sin[c + d* 
x]])/a^3)/d
 

3.6.61.3.1 Defintions of rubi rules used

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3186
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p 
_.), x_Symbol] :> Simp[1/f   Subst[Int[x^p*((a + x)^(m - (p + 1)/2)/(a - x) 
^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && E 
qQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]
 
3.6.61.4 Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.70

method result size
derivativedivides \(\frac {-\frac {1}{4 \sin \left (d x +c \right )^{4}}+\frac {1}{\sin \left (d x +c \right )^{3}}-\frac {2}{\sin \left (d x +c \right )^{2}}+\frac {4}{\sin \left (d x +c \right )}+4 \ln \left (\sin \left (d x +c \right )\right )-4 \ln \left (1+\sin \left (d x +c \right )\right )}{d \,a^{3}}\) \(67\)
default \(\frac {-\frac {1}{4 \sin \left (d x +c \right )^{4}}+\frac {1}{\sin \left (d x +c \right )^{3}}-\frac {2}{\sin \left (d x +c \right )^{2}}+\frac {4}{\sin \left (d x +c \right )}+4 \ln \left (\sin \left (d x +c \right )\right )-4 \ln \left (1+\sin \left (d x +c \right )\right )}{d \,a^{3}}\) \(67\)
parallelrisch \(\frac {-\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-36 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-36 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+152 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+152 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+256 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-512 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{64 d \,a^{3}}\) \(136\)
risch \(\frac {4 i \left (-2 i {\mathrm e}^{6 i \left (d x +c \right )}+2 \,{\mathrm e}^{7 i \left (d x +c \right )}+5 i {\mathrm e}^{4 i \left (d x +c \right )}-8 \,{\mathrm e}^{5 i \left (d x +c \right )}-2 i {\mathrm e}^{2 i \left (d x +c \right )}+8 \,{\mathrm e}^{3 i \left (d x +c \right )}-2 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{a^{3} d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}-\frac {8 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d \,a^{3}}+\frac {4 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d \,a^{3}}\) \(146\)
norman \(\frac {-\frac {16 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {16 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {1}{64 a d}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{64 d a}-\frac {3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {21 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {21 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}-\frac {3 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {3 \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d a}-\frac {\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )}{64 d a}-\frac {1339 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}-\frac {1339 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}-\frac {8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{3}}\) \(284\)

input
int(cos(d*x+c)^5*csc(d*x+c)^5/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/d/a^3*(-1/4/sin(d*x+c)^4+1/sin(d*x+c)^3-2/sin(d*x+c)^2+4/sin(d*x+c)+4*ln 
(sin(d*x+c))-4*ln(1+sin(d*x+c)))
 
3.6.61.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.36 \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {8 \, \cos \left (d x + c\right )^{2} + 16 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) - 16 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 4 \, {\left (4 \, \cos \left (d x + c\right )^{2} - 5\right )} \sin \left (d x + c\right ) - 9}{4 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} - 2 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d\right )}} \]

input
integrate(cos(d*x+c)^5*csc(d*x+c)^5/(a+a*sin(d*x+c))^3,x, algorithm="frica 
s")
 
output
1/4*(8*cos(d*x + c)^2 + 16*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(1/2 
*sin(d*x + c)) - 16*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(sin(d*x + 
c) + 1) - 4*(4*cos(d*x + c)^2 - 5)*sin(d*x + c) - 9)/(a^3*d*cos(d*x + c)^4 
 - 2*a^3*d*cos(d*x + c)^2 + a^3*d)
 
3.6.61.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**5*csc(d*x+c)**5/(a+a*sin(d*x+c))**3,x)
 
output
Timed out
 
3.6.61.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.78 \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {16 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{3}} - \frac {16 \, \log \left (\sin \left (d x + c\right )\right )}{a^{3}} - \frac {16 \, \sin \left (d x + c\right )^{3} - 8 \, \sin \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right ) - 1}{a^{3} \sin \left (d x + c\right )^{4}}}{4 \, d} \]

input
integrate(cos(d*x+c)^5*csc(d*x+c)^5/(a+a*sin(d*x+c))^3,x, algorithm="maxim 
a")
 
output
-1/4*(16*log(sin(d*x + c) + 1)/a^3 - 16*log(sin(d*x + c))/a^3 - (16*sin(d* 
x + c)^3 - 8*sin(d*x + c)^2 + 4*sin(d*x + c) - 1)/(a^3*sin(d*x + c)^4))/d
 
3.6.61.8 Giac [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.81 \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {1536 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {768 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} + \frac {1600 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 456 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 108 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3}{a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}} + \frac {3 \, {\left (a^{9} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8 \, a^{9} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 36 \, a^{9} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 152 \, a^{9} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{12}}}{192 \, d} \]

input
integrate(cos(d*x+c)^5*csc(d*x+c)^5/(a+a*sin(d*x+c))^3,x, algorithm="giac" 
)
 
output
-1/192*(1536*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 768*log(abs(tan(1/2* 
d*x + 1/2*c)))/a^3 + (1600*tan(1/2*d*x + 1/2*c)^4 - 456*tan(1/2*d*x + 1/2* 
c)^3 + 108*tan(1/2*d*x + 1/2*c)^2 - 24*tan(1/2*d*x + 1/2*c) + 3)/(a^3*tan( 
1/2*d*x + 1/2*c)^4) + 3*(a^9*tan(1/2*d*x + 1/2*c)^4 - 8*a^9*tan(1/2*d*x + 
1/2*c)^3 + 36*a^9*tan(1/2*d*x + 1/2*c)^2 - 152*a^9*tan(1/2*d*x + 1/2*c))/a 
^12)/d
 
3.6.61.9 Mupad [B] (verification not implemented)

Time = 10.00 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.78 \[ \int \frac {\cot ^5(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{8\,a^3\,d}-\frac {9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{16\,a^3\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{64\,a^3\,d}+\frac {4\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {8\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{a^3\,d}+\frac {19\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a^3\,d}+\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (38\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{4}\right )}{16\,a^3\,d} \]

input
int(cos(c + d*x)^5/(sin(c + d*x)^5*(a + a*sin(c + d*x))^3),x)
 
output
tan(c/2 + (d*x)/2)^3/(8*a^3*d) - (9*tan(c/2 + (d*x)/2)^2)/(16*a^3*d) - tan 
(c/2 + (d*x)/2)^4/(64*a^3*d) + (4*log(tan(c/2 + (d*x)/2)))/(a^3*d) - (8*lo 
g(tan(c/2 + (d*x)/2) + 1))/(a^3*d) + (19*tan(c/2 + (d*x)/2))/(8*a^3*d) + ( 
cot(c/2 + (d*x)/2)^4*(2*tan(c/2 + (d*x)/2) - 9*tan(c/2 + (d*x)/2)^2 + 38*t 
an(c/2 + (d*x)/2)^3 - 1/4))/(16*a^3*d)